

▶ **Definition:** The partial derivative of a multivariate function is its derivative with respect to one of those variables, with the others held constant.

- **Definition:** The partial derivative of a multivariate function is its derivative with respect to one of those variables, with the others held constant.
- **Notation:**

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{\partial f}{\partial x_1}$$

- ▶ **Definition:** The partial derivative of a multivariate function is its derivative with respect to one of those variables, with the others held constant.
- **▶** Notation:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{\partial f}{\partial x_1}$$

► Some common derivative rules:

- ▶ **Definition:** The partial derivative of a multivariate function is its derivative with respect to one of those variables, with the others held constant.
- **▶** Notation:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{\partial f}{\partial x_1}$$

- ► Some common derivative rules:
 - 1. $\frac{dx^n}{dx} = nx^{n-1}$

- ▶ **Definition:** The partial derivative of a multivariate function is its derivative with respect to one of those variables, with the others held constant.
- **▶** Notation:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{\partial f}{\partial x_1}$$

- ► Some common derivative rules:
 - 1. $\frac{dx^n}{dx} = nx^{n-1}$
 - 2. For $a \in \mathbb{R}$, $\frac{da}{dx} = 0$.

(Partial) Derivatives

- ▶ **Definition:** The partial derivative of a multivariate function is its derivative with respect to one of those variables, with the others held constant.
- **▶** Notation:

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{\partial f}{\partial x_1}$$

Some common derivative rules:

1.
$$\frac{dx^n}{dx} = nx^{n-1}$$

2. For $a \in \mathbb{R}$, $\frac{da}{dx} = 0$. \Rightarrow 3. For $a \in \mathbb{R}$, $\frac{dax^n}{dx} = a \cdot nx^{n-1}$.

- **Definition:** The partial derivative of a multivariate function is its derivative with respect to one of those variables, with the others held constant.
- **Notation:**

$$\frac{\partial f(x_1, x_2)}{\partial x_1} = \frac{\partial f}{\partial x_1}$$

- Some common derivative rules:

$$\left. \begin{array}{ll} 1. & \frac{dx^n}{dx} = nx^{n-1} \\ 2. & \text{For } a \in \mathbb{R}, \frac{da}{dx} = 0. \end{array} \right\} \implies 3. \text{ For } a \in \mathbb{R}, \frac{dax^n}{dx} = a \cdot nx^{n-1}.$$

4. For
$$a \in \mathbb{R}$$
, $\frac{d}{dx}[x^n + a] = \frac{d}{dx}x^n + \frac{d}{dx}a = nx^{n-1} + 0 = nx^{n-1}$.

▶ Optimisation problems are essentially minimisation/maximisation problems.

- ▶ Optimisation problems are essentially minimisation/maximisation problems.
- ▶ You choose the value of variables to maximise/minimise a function.

- ▶ Optimisation problems are essentially minimisation/maximisation problems.
- ▶ You choose the value of variables to maximise/minimise a function.
- ► Toolkit: take first derivatives, set them to zero, solve for the variable(s).

- ▶ Optimisation problems are essentially minimisation/maximisation problems.
- ▶ You choose the value of variables to maximise/minimise a function.
- ► Toolkit: take first derivatives, set them to zero, solve for the variable(s).
- Constrained optimisation problems involve additional conditions to satisfy for the solution.