(Labour Market)

▶ Labor Force (L_t) = Employed (N_t) + Unemployed (U_t)

- ▶ Labor Force (L_t) = Employed (N_t) + Unemployed (U_t)
- ► Definitions:
 - ► Job Separation Rate (s)
 - ► Job Finding Rate (f)
 - ▶ Unemployment Rate $u_t = U_t/L_t$

- ▶ Labor Force (L_t) = Employed (N_t) + Unemployed (U_t)
- **▶** Definitions:
 - ► Job Separation Rate (s)
 - ightharpoonup Job Finding Rate (f)
 - ▶ Unemployment Rate $u_t = U_t/L_t$
- $lacksquare U_{t+1} U_t = sN_t fU_t \implies u_{t+1} u_t = s(1 u_t) fu_t$

- ▶ Labor Force (L_t) = Employed (N_t) + Unemployed (U_t)
- ► Definitions:
 - ightharpoonup Job Separation Rate (s)
 - ▶ Job Finding Rate (f)
 - ▶ Unemployment Rate $u_t = U_t/L_t$
- $lackbr{D} U_{t+1} U_t = sN_t fU_t \implies u_{t+1} u_t = s(1 u_t) fu_t$
- ► Labor market flows: *fluid* vs *sclerotic*.

- ▶ Labor Force (L_t) = Employed (N_t) + Unemployed (U_t)
- **▶** Definitions:
 - ightharpoonup Job Separation Rate (s)
 - ightharpoonup Job Finding Rate (f)
 - ▶ Unemployment Rate $u_t = U_t/L_t$
- $lacksquare U_{t+1} U_t = sN_t fU_t \implies u_{t+1} u_t = s(1 u_t) fu_t$
- ► Labor market flows: *fluid* vs *sclerotic*.
- ightharpoonup Expected unemployed duration: 1/f.
- \triangleright Expected employed duration: 1/s.

lacktriangle Job matches $M_t = f_t U_t$; Vacancies V_t

- ▶ Job matches $M_t = f_t U_t$; Vacancies V_t
- ▶ Matching function $M_t = F(U_t, V_t)$

- ▶ Job matches $M_t = f_t U_t$; Vacancies V_t
- ▶ Matching function $M_t = F(U_t, V_t)$
 - ▶ Job finding rate $f_t = M_t/U_t = F(U_t, V_t)/U_t$

- ▶ Job matches $M_t = f_t U_t$; Vacancies V_t
- ▶ Matching function $M_t = F(U_t, V_t)$
 - ▶ Job finding rate $f_t = M_t/U_t = F(U_t, V_t)/U_t$
- ▶ Vacancy filling rate $q_t = M_t/V_t = F(U_t, V_t)/V_t$

- ▶ Job matches $M_t = f_t U_t$; Vacancies V_t
- ▶ Matching function $M_t = F(U_t, V_t)$
 - ▶ Job finding rate $f_t = M_t/U_t = F(U_t, V_t)/U_t$
- ▶ Vacancy filling rate $q_t = M_t/V_t = F(U_t, V_t)/V_t$
- lacktriangle Labor market tightness $heta_t = V_t/U_t = v_t/u_t$

- ▶ Job matches $M_t = f_t U_t$; Vacancies V_t
- ▶ Matching function $M_t = F(U_t, V_t)$
 - ▶ Job finding rate $f_t = M_t/U_t = F(U_t, V_t)/U_t$
- ▶ Vacancy filling rate $q_t = M_t/V_t = F(U_t, V_t)/V_t$
- ▶ Labor market tightness $\theta_t = V_t/U_t = v_t/u_t$
- ▶ Vacancy filling rate $q(\theta)$ is decreasing in θ .
- ▶ Job finding rate $f(\theta)$ is increasing in θ .

- ▶ Job matches $M_t = f_t U_t$; Vacancies V_t
- ▶ Matching function $M_t = F(U_t, V_t)$
 - ▶ Job finding rate $f_t = M_t/U_t = F(U_t, V_t)/U_t$
- ▶ Vacancy filling rate $q_t = M_t/V_t = F(U_t, V_t)/V_t$
- ▶ Labor market tightness $\theta_t = V_t/U_t = v_t/u_t$
- ▶ Vacancy filling rate $q(\theta)$ is decreasing in θ .
- ▶ Job finding rate $f(\theta)$ is increasing in θ .
 - $f(\theta) = \theta q(\theta)$

- ▶ Job matches $M_t = f_t U_t$; Vacancies V_t
- ▶ Matching function $M_t = F(U_t, V_t)$
 - ▶ Job finding rate $f_t = M_t/U_t = F(U_t, V_t)/U_t$
- ▶ Vacancy filling rate $q_t = M_t/V_t = F(U_t, V_t)/V_t$
- ▶ Labor market tightness $\theta_t = V_t/U_t = v_t/u_t$
- ▶ Vacancy filling rate $q(\theta)$ is decreasing in θ .
- ▶ Job finding rate $f(\theta)$ is increasing in θ .
 - $f(\theta) = \theta q(\theta)$
- \triangleright Value of a filled position J_t ; cost of posting a vacancy c_t .
- Firms post vacancies until $q(\theta)J_t = c_t$.

Vacancy rate (v) Job creation Unemployment rate (u)

Beveridge Curve

► Beveridge curve (BC) obtained from steady-state relationship between *u* and *v*.

$$u = \frac{s}{s + f(\theta = v/u)}$$

Beveridge Curve

ightharpoonup Beveridge curve (BC) obtained from steady-state relationship between u and v.

$$u = \frac{s}{s + f(\theta = v/u)}$$

 Lower matching efficiency A shifts BC outwards.

Beveridge Curve

► Beveridge curve (BC) obtained from steady-state relationship between *u* and *v*.

$$u = \frac{s}{s + f(\theta = v/u)}$$

- Lower matching efficiency A shifts BC outwards
- ▶ Job creation curve rotates with change in θ^* .
 - θ* increases with match efficiency A, value of a filled job J, and decreases with vacancy creation costs c.