

► Real exchange rate:

$$\epsilon = \frac{P}{P^*/E} = \frac{EP}{P^*}$$

Exchange Rates

► Real exchange rate:

$$\epsilon = \frac{P}{P^*/E} = \frac{EP}{P^*}$$

► Uncovered interest rate parity:

$$(1+i_t)=(1+i_t^*)rac{E_t}{E_{t+1}^e}$$

► Real exchange rate:

$$\epsilon = \frac{P}{P^*/E} = \frac{EP}{P^*}$$

► Uncovered interest rate parity:

$$(1+i_t) = (1+i_t^*) \frac{E_t}{E_{t+1}^e}$$
 $i_t \approx i_t^* - \frac{E_{t+1}^e - E_t}{E_t}$

Exchange Rates

► Real exchange rate:

$$\epsilon = \frac{P}{P^*/E} = \frac{EP}{P^*}$$

Uncovered interest rate parity:

$$(1+i_t) = (1+i_t^*) rac{E_t}{E_{t+1}^e} \qquad \qquad i_t pprox i_t^* - rac{E_{t+1}^e - E_t}{E_t}$$

▶ Demand for goods in an open economy:

$$Z \equiv C + I + G + X - IM/\epsilon$$

$$NX(\epsilon) \equiv X(Y^*, \epsilon) - IM(Y, \epsilon)/\epsilon$$
 $NX \downarrow \text{ as } \epsilon \uparrow$

$$NX(\epsilon) \equiv X(Y^*, \epsilon) - IM(Y, \epsilon)/\epsilon$$
 $NX \downarrow \text{ as } \epsilon \uparrow$

▶ Demand for domestic goods (ZZ) \neq Domestic demand for goods (DD).

$$NX(\epsilon) \equiv X(Y^*, \epsilon) - IM(Y, \epsilon)/\epsilon$$
 $NX \downarrow \text{ as } \epsilon \uparrow$

- ▶ Demand for domestic goods (ZZ) \neq Domestic demand for goods (DD).
- ▶ Under goods market equilibrium, Y = ZZ.

$$NX(\epsilon) \equiv X(Y^*, \epsilon) - IM(Y, \epsilon)/\epsilon$$
 $NX \downarrow \text{ as } \epsilon \uparrow$

- ▶ Demand for domestic goods (ZZ) \neq Domestic demand for goods (DD).
- ▶ Under goods market equilibrium, Y = ZZ.
- ► Goods market equilibrium:

$$Y = C(Y, T) + I(Y, i) + G + NX(Y, Y^*, \epsilon)$$

Mundell-Fleming Model

▶ Under zero inflation and equal domestic and foreign price levels $P = P^* \leftrightarrow E = \epsilon$,

$$Y = C(Y, T) + I(Y, i) + G + NX(Y, Y^*, E)$$

Mundell-Fleming Model

▶ Under zero inflation and equal domestic and foreign price levels $P = P^* \leftrightarrow E = \epsilon$,

$$Y = C(Y, T) + I(Y, i) + G + NX(Y, Y^*, E)$$

▶ If future exchange rate is \bar{E}^e , then

$$i=rac{\left(1+i^*
ight)}{ar{\mathcal{E}}^e} \mathcal{E}-1 \hspace{1cm} \mathcal{E}=rac{1+i}{1+i^*}ar{\mathcal{E}}^e$$

Mundell-Fleming Model

▶ Under zero inflation and equal domestic and foreign price levels $P = P^* \leftrightarrow E = \epsilon$.

$$Y = C(Y, T) + I(Y, i) + G + NX(Y, Y^*, E)$$

▶ If future exchange rate is \bar{E}^e , then

$$i = \frac{\left(1+i^*\right)}{\bar{F}^e}E - 1$$
 $E = \frac{1+i}{1+i^*}\bar{E}^e$

► Open-economy IS curve:

$$Y = C(Y, T) + I(Y, i) + G + NX(Y, Y^*, \frac{1+i}{1+i^*}\bar{E}^e)$$

▶ Under zero inflation and equal domestic and foreign price levels $P = P^* \leftrightarrow E = \epsilon$,

$$Y = C(Y, T) + I(Y, i) + G + NX(Y, Y^*, E)$$

▶ If future exchange rate is \bar{E}^e , then

$$i = \frac{(1+i^*)}{\bar{E}^e}E - 1$$
 $E = \frac{1+i}{1+i^*}\bar{E}^e$

► Open-economy IS curve:

$$Y = C(Y, T) + I(Y, i) + G + NX(Y, Y^*, \frac{1+i}{1+i^*}\bar{E}^e)$$

► LM curve: $i = \overline{i}$ (real money supply adjust to clear money market M/P = YL(i)).