General F-Test

* Tests for k linear restrictions on the slope coefficients of a multiple linear regression model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \epsilon$$

- * $H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$ v.s. $H_A:$ at least one $\beta_i \neq 0$
- * If the null hypothesis is true, it implies the following model: $Y = \beta_0 + \epsilon$
- * Since the restricted and unrestricted models have the same dependent variable, the SST is the same for both models.
- * For the restricted model, because there are no regressors, the SSR is zero and the SSE is equal to the SST.
- * The F-statistic can be calculated as follows:

$$F = \frac{n-k-1}{k} \frac{SSR}{SSE} = \frac{n-k-1}{k} \frac{SST - SSE}{SSE} = \frac{n-k-1}{k} \frac{SSE_r - SSE}{SSE}$$

Checking for Multicollinearity

- One of the assumptions of the multiple linear regression model is that the independent variables are not perfectly correlated with each other. (LR5)
- If the independent variables are highly correlated with each other, it can lead to unreliable estimates of the coefficients and inflated standard errors.
- ► To check for multicollinearity, there are 3 rules of thumb:
 - 1. If the R^2 is high but only few independent variables are significant with logical signs.
 - 2. If the correlation was strong between the independent variables or if it is stronger than the correlation between the independent variables and the dependent variable.
 - 3. If one or several variance inflation factors (VIF) are greater than 5.