

Assumptions

▶ Unit measure of agents [0, 1]. Infinite (or very large) population.

- ▶ Unit measure of agents [0, 1]. Infinite (or very large) population.
- ▶ Unit measure of goods produced [0, 1]. Only one good.

- ▶ Unit measure of agents [0, 1]. Infinite (or very large) population.
- ▶ Unit measure of goods produced [0, 1]. Only one good.
- ▶ Discrete time t = 1, 2, 3, ..., infinitely lived agents.

- ▶ Unit measure of agents [0, 1]. Infinite (or very large) population.
- ▶ Unit measure of goods produced [0, 1]. Only one good.
- ▶ Discrete time t = 1, 2, 3, ..., infinitely lived agents.
- ► Agents do not consume the good the produce. They trade it.

Assumptions

► Each period, matches occur between agents. Trade happens if mutually beneficial.

- ► Each period, matches occur between agents. Trade happens if mutually beneficial.
- Probability an individual is interested in trading is x. So the probability of a trade is x^2 .

- ► Each period, matches occur between agents. Trade happens if mutually beneficial.
- Probability an individual is interested in trading is x. So the probability of a trade is x^2 .
- ightharpoonup Successful trade gives a utility of u. Cost of production is k.

- ► Each period, matches occur between agents. Trade happens if mutually beneficial.
- ightharpoonup Probability an individual is interested in trading is x. So the probability of a trade is x^2 .
- ightharpoonup Successful trade gives a utility of u. Cost of production is k.
- Assume u > k so that production occurs.

Without Money

$$V = x^2 \cdot (u - k) +$$

Without Money

$$V = x^2 \cdot (u - k) + (1 - x^2) \cdot 0 +$$

Without Money

$$V = x^2 \cdot (u - k) + (1 - x^2) \cdot 0 + \beta \cdot V$$

Without Money

$$V = x^{2} \cdot (u - k) + (1 - x^{2}) \cdot 0 + \beta \cdot V$$
$$\implies V = x^{2} \cdot (u - k) + \beta \cdot V$$

Without Money

$$V = x^{2} \cdot (u - k) + (1 - x^{2}) \cdot 0 + \beta \cdot V$$

$$\implies V = x^{2} \cdot (u - k) + \beta \cdot V$$

$$\implies (1 - \beta)V = x^{2}(u - k)$$

Without Money

$$V = x^{2} \cdot (u - k) + (1 - x^{2}) \cdot 0 + \beta \cdot V$$

$$\implies V = x^{2} \cdot (u - k) + \beta \cdot V$$

$$\implies (1 - \beta)V = x^{2}(u - k)$$

$$\implies V = \frac{x^{2}(u - k)}{1 - \beta}$$

With Money

ightharpoonup A proportion M is endowed with money. 0 < M < 1.

With Money

- ▶ A proportion M is endowed with money. 0 < M < 1.
- ► Agents can hold either a unit of money or goods.

With Money

- ▶ A proportion M is endowed with money. 0 < M < 1.
- ► Agents can hold either a unit of money or goods.
- Agents choose to accept money with probability π and believe that a random agent will accept money with probability Π .

With Money

- ▶ A proportion M is endowed with money. 0 < M < 1.
- ► Agents can hold either a unit of money or goods.
- Agents choose to accept money with probability π and believe that a random agent will accept money with probability Π .
- ightharpoonup Agents holding goods get value V_C and those holding money get value V_M .

With Money

What is the optimal level of π for an agent?

With Money

What is the optimal level of π for an agent? \implies compare V_C and V_M .

 V_C

With Money

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) +$$

With Money

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + C$$

With Money

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

With Money

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$
 V_M

With Money

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) +$$

With Money

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C +$$

With Money

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$

With Money

What is the optimal level of π for an agent? \implies compare V_C and V_M .

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$

With Money

What is the optimal level of π for an agent? \implies compare V_C and V_M .

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$

if
$$x < \Pi \implies V_C < V_M \implies$$

With Money

What is the optimal level of π for an agent? \implies compare V_C and V_M .

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$

if
$$x < \Pi \implies V_C < V_M \implies \pi = 1$$

With Money

What is the optimal level of π for an agent? \implies compare $V_{\mathcal{C}}$ and V_{M} .

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$

$$\begin{array}{lll} \mbox{\it if} & x < \Pi & \Longrightarrow V_C < V_M & \Longrightarrow \pi = 1 \\ \mbox{\it if} & x > \Pi & \Longrightarrow V_C > V_M & \Longrightarrow \end{array}$$

With Money

What is the optimal level of π for an agent? \implies compare V_C and V_M .

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$

if
$$x < \Pi$$
 \Longrightarrow $V_C < V_M$ \Longrightarrow $\pi = 1$
if $x > \Pi$ \Longrightarrow $V_C > V_M$ \Longrightarrow $\pi = 0$

With Money

What is the optimal level of π for an agent? \implies compare V_C and V_M .

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$

With Money

What is the optimal level of π for an agent? \implies compare V_C and V_M .

$$V_C = (1 - M) \cdot x^2 \cdot (u - k) + M \cdot x \cdot \pi \cdot \beta V_M + (1 - M \cdot x \cdot \pi) \cdot \beta V_C$$

$$V_M = (1 - M) \cdot x \cdot \Pi \cdot (u - k) + (1 - M) \cdot x \cdot \Pi \cdot \beta V_C + \{1 - (1 - M) \cdot x \cdot \Pi\} \cdot \beta V_M$$