Model Primitives ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$. - ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$. - ► **Asset:** a single type of asset *Y*. - ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$. - ► **Asset:** a single type of asset *Y*. - ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y. - ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$. - ► **Asset:** a single type of asset *Y*. - ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y. - ► Future States: 2 types $\{U, D\}$. - ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$. - ► **Asset:** a single type of asset *Y*. - ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y. - ► Future States: 2 types {U, D}. - **Beliefs:** Individual h puts probability h on state U and 1 h on state D. - ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$. - ► **Asset:** a single type of asset *Y*. - ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y. - ▶ **Future States:** 2 types $\{U, D\}$. - **Beliefs:** Individual h puts probability h on state U and 1 h on state D. - ▶ Endowment: individuals are endowed with one unit of money and one unit of asset Y. **Model Primitives** ▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth. - ▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth. - ightharpoonup Asset payoffs: a unit of asset Y pays 1 in state U and 0.2 in state D. - ▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth. - \blacktriangleright Asset payoffs: a unit of asset Y pays 1 in state U and 0.2 in state D. - ► **Strategy:** individuals buy if they believe an asset is underpriced (undervalued). $$\begin{cases} \mathsf{Buy} & \text{if } p < h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Sell} & \text{if } p > h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Indifferent} & \text{if } p = h \cdot 1 + (1-h) \cdot 0.2 \end{cases}$$ ### **Model Primitives** - ▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth. - ightharpoonup Asset payoffs: a unit of asset Y pays 1 in state U and 0.2 in state D. - ► **Strategy:** individuals buy if they believe an asset is underpriced (undervalued). $$\begin{cases} \mathsf{Buy} & \text{if } p < h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Sell} & \text{if } p > h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Indifferent} & \text{if } p = h \cdot 1 + (1-h) \cdot 0.2 \end{cases}$$ ► No short selling! **No-Borrowing Equilibrium** ► For any price, there is an indifferent individual h. - ► For any price, there is an indifferent individual h. - ightharpoonup The equilibrium price makes h^* indifferent between buying and selling, i.e. $$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^*$$ - ► For any price, there is an indifferent individual h. - \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e. $$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$ (1) ## No-Borrowing Equilibrium - ► For any price, there is an indifferent individual h. - \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e. $$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$ (1) ▶ Individuals $h > h^*$ buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$. - For any price, there is an indifferent individual h. - \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e. $$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$ (1) ▶ Individuals $$h > h^*$$ buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$. Demand $= \frac{1}{p^*}(1 - h^*)$ - For any price, there is an indifferent individual h. - \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e. $$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$ (1) - ▶ Individuals $h > h^*$ buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$. Demand $= \frac{1}{p^*}(1 h^*)$ - ▶ Individuals $h < h^*$ sell the asset. Supply = h^* . - For any price, there is an indifferent individual h. - \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e. $$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$ (1) - ▶ Individuals $h > h^*$ buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$. Demand $= \frac{1}{p^*}(1 h^*)$ - ▶ Individuals $h < h^*$ sell the asset. Supply = h^* . - ► In equilibrium, demand = supply. $$\frac{1}{p^*}(1-h^*) = h^* \tag{2}$$ **No-Borrowing Equilibrium** We solve (1) and (2) to pin down p^* and h^* . ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{p^*}(1-h^*)=h^*$$ ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$\frac{1}{p^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=p^*h^*$$ ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{ ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*= ho^*h^*\Leftrightarrow h^*= rac{1}{1+ ho^*}$$ ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{ ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*= ho^*h^*\Leftrightarrow h^*= rac{1}{1+ ho^*}$$ Substituting h^* into equation (1), we have $$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8}$$ ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{ ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*= ho^*h^*\Leftrightarrow h^*= rac{1}{1+ ho^*}$$ Substituting h^* into equation (1), we have $$rac{1}{1+ ho^*} = rac{p^*-0.2}{0.8} \Leftrightarrow 0.8 p^* = (1+p^*)(p^*-0.2)$$ ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{ ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*= ho^*h^*\Leftrightarrow h^*= rac{1}{1+ ho^*}$$ Substituting h^* into equation (1), we have $$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$ ### No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{ ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*= ho^*h^*\Leftrightarrow h^*= rac{1}{1+ ho^*}$$ Substituting h^* into equation (1), we have $$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1 = 0$$ ### No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{ ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*= ho^*h^*\Leftrightarrow h^*= rac{1}{1+ ho^*}$$ Substituting h^* into equation (1), we have $$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1 = 0 \implies p^* = \frac{-2 \pm \sqrt{29}}{5} = 0.677, -1.477$$ ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{ ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*= ho^*h^*\Leftrightarrow h^*= rac{1}{1+ ho^*}$$ Substituting h^* into equation (1), we have $$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1 = 0 \implies p^* = \frac{-2 \pm \sqrt{29}}{5} = 0.677, -1.477 \implies p^* = 0.68.$$ ## No-Borrowing Equilibrium We solve (1) and (2) to pin down p^* and h^* . From equation (2), we have $$rac{1}{p^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=p^*h^*\Leftrightarrow h^*= rac{1}{1+p^*}$$ Substituting h^* into equation (1), we have $$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1 = 0 \implies p^* = \frac{-2 \pm \sqrt{29}}{5} = 0.677, -1.477 \implies p^* = 0.68.$$ $$\implies h^* = \frac{1}{1 + 0.677} = 0.60.$$ **Borrowing Equilibrium** ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$. - ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$. - ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$. - ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$. - ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$. - ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral. - ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$. - ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$. - ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral. - Demand is now different $$\frac{1}{p^*}\left(\underbrace{(1-h)\cdot 1}_{endowment}+\right)$$ - ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$. - ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$. - ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral. - Demand is now different $$\frac{1}{p^*} \left(\underbrace{(1-h) \cdot 1}_{endowment} + \underbrace{0.2 \cdot 1}_{borrowing} \right)$$ ### **Borrowing Equilibrium** - ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$. - ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$. - ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral. - Demand is now different $$\frac{1}{p^*} \left(\underbrace{(1-h) \cdot 1}_{endowment} + \underbrace{0.2 \cdot 1}_{borrowing} \right)$$ ▶ Still, $h < h^*$ individuals willing to sell. So, supply $= h^*$. - ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$. - ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$. - ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral. - Demand is now different $$\frac{1}{p^*} \left(\underbrace{(1-h) \cdot 1}_{endowment} + \underbrace{0.2 \cdot 1}_{borrowing} \right)$$ - ▶ Still, $h < h^*$ individuals willing to sell. So, supply = h^* . - ► In equilibrium, demand = supply. $$h^* = \frac{1}{p^*} \left(1 - h^* + 0.2 \right) \tag{3}$$ **Borrowing Equilibrium** Here, we solve (1) and (3) to pin down p^* and h^* . **Borrowing Equilibrium** Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2)$$ Borrowing Equilibrium Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2$$ Borrowing Equilibrium Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$ Substituting h^* into equation (1), we have $$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8}$$ Borrowing Equilibrium Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$ Substituting h^* into equation (1), we have $$\frac{1.2}{1+p^*} = \frac{p^*-0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^*-0.2)$$ Borrowing Equilibrium Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$ Substituting h^* into equation (1), we have $$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$ **Borrowing Equilibrium** Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$ Substituting h^* into equation (1), we have $$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1.16 = 0$$ **Borrowing Equilibrium** Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$ Substituting h^* into equation (1), we have $$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1.16 = 0 \implies p^* = \frac{-2 \pm \sqrt{33}}{5} = 0.75, -1.55$$ **Borrowing Equilibrium** Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$ Substituting h^* into equation (1), we have $$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1.16 = 0 \implies p^* = \frac{-2 \pm \sqrt{33}}{5} = 0.75, -1.55 \implies p^* = 0.75.$$ **Borrowing Equilibrium** Here, we solve (1) and (3) to pin down p^* and h^* . From equation (3), we have $$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$ Substituting h^* into equation (1), we have $$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$ $$p^{*2} + 0.8p^* - 1.16 = 0 \implies p^* = \frac{-2 \pm \sqrt{33}}{5} = 0.75, -1.55 \implies p^* = 0.75.$$ $$\implies h^* = \frac{1.2}{1 + 0.75} = 0.69.$$ **Takeaways** ▶ Borrowing allows most optimistic individuals to own assets – this raises prices. - ▶ Borrowing allows most optimistic individuals to own assets this raises prices. - ▶ Looser the borrowing constraints, $\uparrow h^*$, $\uparrow p^*$. - ▶ Borrowing allows most optimistic individuals to own assets this raises prices. - ► Looser the borrowing constraints, $\uparrow h^*$, $\uparrow p^*$. - ► Thus, asset prices ≠ fundamental value; rather dependent on borrowing constraints (leverage). - ▶ Borrowing allows most optimistic individuals to own assets this raises prices. - ▶ Looser the borrowing constraints, $\uparrow h^*, \uparrow p^*$. - ► Thus, asset prices ≠ fundamental value; rather dependent on borrowing constraints (leverage). - Leverage cycles mostly responsible for asset price fluctuations. - ▶ Borrowing allows most optimistic individuals to own assets this raises prices. - ▶ Looser the borrowing constraints, $\uparrow h^*, \uparrow p^*$. - ► Thus, asset prices ≠ fundamental value; rather dependent on borrowing constraints (leverage). - Leverage cycles mostly responsible for asset price fluctuations. - Regulation preventing big leverage cycles can prevent asset price cycles.