

Model Primitives

▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$.

- ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$.
- ► **Asset:** a single type of asset *Y*.

- ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$.
- ► **Asset:** a single type of asset *Y*.
- ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y.

- ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$.
- ► **Asset:** a single type of asset *Y*.
- ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y.
- ► Future States: 2 types $\{U, D\}$.

- ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$.
- ► **Asset:** a single type of asset *Y*.
- ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y.
- ► Future States: 2 types {U, D}.
- **Beliefs:** Individual h puts probability h on state U and 1 h on state D.

- ▶ **Agents:** are indexed by h and equally distributed over $h \in [0, 1]$.
- ► **Asset:** a single type of asset *Y*.
- ▶ **Timing:** 2 periods. In period 1, agents decide whether to buy or sell asset Y.
- ▶ **Future States:** 2 types $\{U, D\}$.
- **Beliefs:** Individual h puts probability h on state U and 1 h on state D.
- ▶ Endowment: individuals are endowed with one unit of money and one unit of asset Y.

Model Primitives

▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth.

- ▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth.
- ightharpoonup Asset payoffs: a unit of asset Y pays 1 in state U and 0.2 in state D.

- ▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth.
- \blacktriangleright Asset payoffs: a unit of asset Y pays 1 in state U and 0.2 in state D.
- ► **Strategy:** individuals buy if they believe an asset is underpriced (undervalued).

$$\begin{cases} \mathsf{Buy} & \text{if } p < h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Sell} & \text{if } p > h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Indifferent} & \text{if } p = h \cdot 1 + (1-h) \cdot 0.2 \end{cases}$$

Model Primitives

- ▶ Risk Profile: individuals are risk-neutral and want to maximize their wealth.
- ightharpoonup Asset payoffs: a unit of asset Y pays 1 in state U and 0.2 in state D.
- ► **Strategy:** individuals buy if they believe an asset is underpriced (undervalued).

$$\begin{cases} \mathsf{Buy} & \text{if } p < h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Sell} & \text{if } p > h \cdot 1 + (1-h) \cdot 0.2 \\ \mathsf{Indifferent} & \text{if } p = h \cdot 1 + (1-h) \cdot 0.2 \end{cases}$$

► No short selling!

No-Borrowing Equilibrium

► For any price, there is an indifferent individual h.

- ► For any price, there is an indifferent individual h.
- ightharpoonup The equilibrium price makes h^* indifferent between buying and selling, i.e.

$$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^*$$

- ► For any price, there is an indifferent individual h.
- \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e.

$$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$
 (1)

No-Borrowing Equilibrium

- ► For any price, there is an indifferent individual h.
- \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e.

$$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$
 (1)

▶ Individuals $h > h^*$ buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$.

- For any price, there is an indifferent individual h.
- \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e.

$$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$
 (1)

▶ Individuals
$$h > h^*$$
 buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$. Demand $= \frac{1}{p^*}(1 - h^*)$

- For any price, there is an indifferent individual h.
- \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e.

$$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$
 (1)

- ▶ Individuals $h > h^*$ buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$. Demand $= \frac{1}{p^*}(1 h^*)$
- ▶ Individuals $h < h^*$ sell the asset. Supply = h^* .

- For any price, there is an indifferent individual h.
- \triangleright The equilibrium price makes h^* indifferent between buying and selling, i.e.

$$h^* \cdot 1 + (1 - h^*) \cdot 0.2 = 0.8h^* + 0.2 = p^* \Leftrightarrow h^* = \frac{p^* - 0.2}{0.8}$$
 (1)

- ▶ Individuals $h > h^*$ buy. Each buy $= \frac{\text{Total Money}}{Price} = \frac{1}{p^*}$. Demand $= \frac{1}{p^*}(1 h^*)$
- ▶ Individuals $h < h^*$ sell the asset. Supply = h^* .
- ► In equilibrium, demand = supply.

$$\frac{1}{p^*}(1-h^*) = h^* \tag{2}$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{p^*}(1-h^*)=h^*$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$\frac{1}{p^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=p^*h^*$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{
ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=
ho^*h^*\Leftrightarrow h^*=rac{1}{1+
ho^*}$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{
ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=
ho^*h^*\Leftrightarrow h^*=rac{1}{1+
ho^*}$$

Substituting h^* into equation (1), we have

$$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8}$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{
ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=
ho^*h^*\Leftrightarrow h^*=rac{1}{1+
ho^*}$$

Substituting h^* into equation (1), we have

$$rac{1}{1+
ho^*} = rac{p^*-0.2}{0.8} \Leftrightarrow 0.8 p^* = (1+p^*)(p^*-0.2)$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{
ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=
ho^*h^*\Leftrightarrow h^*=rac{1}{1+
ho^*}$$

Substituting h^* into equation (1), we have

$$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{
ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=
ho^*h^*\Leftrightarrow h^*=rac{1}{1+
ho^*}$$

Substituting h^* into equation (1), we have

$$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1 = 0$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{
ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=
ho^*h^*\Leftrightarrow h^*=rac{1}{1+
ho^*}$$

Substituting h^* into equation (1), we have

$$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1 = 0 \implies p^* = \frac{-2 \pm \sqrt{29}}{5} = 0.677, -1.477$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{
ho^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=
ho^*h^*\Leftrightarrow h^*=rac{1}{1+
ho^*}$$

Substituting h^* into equation (1), we have

$$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1 = 0 \implies p^* = \frac{-2 \pm \sqrt{29}}{5} = 0.677, -1.477 \implies p^* = 0.68.$$

No-Borrowing Equilibrium

We solve (1) and (2) to pin down p^* and h^* .

From equation (2), we have

$$rac{1}{p^*}(1-h^*)=h^*\Leftrightarrow 1-h^*=p^*h^*\Leftrightarrow h^*=rac{1}{1+p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.8p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.8 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1 = 0 \implies p^* = \frac{-2 \pm \sqrt{29}}{5} = 0.677, -1.477 \implies p^* = 0.68.$$

$$\implies h^* = \frac{1}{1 + 0.677} = 0.60.$$

Borrowing Equilibrium

▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$.

- ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$.
- ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$.

- ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$.
- ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$.
- ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral.

- ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$.
- ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$.
- ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral.
- Demand is now different

$$\frac{1}{p^*}\left(\underbrace{(1-h)\cdot 1}_{endowment}+\right)$$

- ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$.
- ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$.
- ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral.
- Demand is now different

$$\frac{1}{p^*} \left(\underbrace{(1-h) \cdot 1}_{endowment} + \underbrace{0.2 \cdot 1}_{borrowing} \right)$$

Borrowing Equilibrium

- ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$.
- ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$.
- ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral.
- Demand is now different

$$\frac{1}{p^*} \left(\underbrace{(1-h) \cdot 1}_{endowment} + \underbrace{0.2 \cdot 1}_{borrowing} \right)$$

▶ Still, $h < h^*$ individuals willing to sell. So, supply $= h^*$.

- ▶ If unrestricted borrowing, h = 1 would borrow to buy the asset pushing $p^* = 1$.
- ► Recall $p^* = 0.8h^* + 0.2$. Thus, $p^* \in [0.2, 1]$.
- ▶ Under restricted borrowing, assume individuals can borrow 0.2 for each unit of collateral.
- Demand is now different

$$\frac{1}{p^*} \left(\underbrace{(1-h) \cdot 1}_{endowment} + \underbrace{0.2 \cdot 1}_{borrowing} \right)$$

- ▶ Still, $h < h^*$ individuals willing to sell. So, supply = h^* .
- ► In equilibrium, demand = supply.

$$h^* = \frac{1}{p^*} \left(1 - h^* + 0.2 \right) \tag{3}$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2)$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8}$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1.2}{1+p^*} = \frac{p^*-0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^*-0.2)$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1.16 = 0$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1.16 = 0 \implies p^* = \frac{-2 \pm \sqrt{33}}{5} = 0.75, -1.55$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1.16 = 0 \implies p^* = \frac{-2 \pm \sqrt{33}}{5} = 0.75, -1.55 \implies p^* = 0.75.$$

Borrowing Equilibrium

Here, we solve (1) and (3) to pin down p^* and h^* .

From equation (3), we have

$$h^* = \frac{1}{p^*} (1 - h^* + 0.2) \Leftrightarrow p^* h^* = 1 - h^* + 0.2 \Leftrightarrow h^* = \frac{1.2}{1 + p^*}$$

Substituting h^* into equation (1), we have

$$\frac{1.2}{1+p^*} = \frac{p^* - 0.2}{0.8} \Leftrightarrow 0.96p^* = (1+p^*)(p^* - 0.2) \Leftrightarrow 0.96 = p^{*2} + 0.8p^* - 0.2$$

$$p^{*2} + 0.8p^* - 1.16 = 0 \implies p^* = \frac{-2 \pm \sqrt{33}}{5} = 0.75, -1.55 \implies p^* = 0.75.$$

$$\implies h^* = \frac{1.2}{1 + 0.75} = 0.69.$$

Takeaways

▶ Borrowing allows most optimistic individuals to own assets – this raises prices.

- ▶ Borrowing allows most optimistic individuals to own assets this raises prices.
- ▶ Looser the borrowing constraints, $\uparrow h^*$, $\uparrow p^*$.

- ▶ Borrowing allows most optimistic individuals to own assets this raises prices.
- ► Looser the borrowing constraints, $\uparrow h^*$, $\uparrow p^*$.
- ► Thus, asset prices ≠ fundamental value; rather dependent on borrowing constraints (leverage).

- ▶ Borrowing allows most optimistic individuals to own assets this raises prices.
- ▶ Looser the borrowing constraints, $\uparrow h^*, \uparrow p^*$.
- ► Thus, asset prices ≠ fundamental value; rather dependent on borrowing constraints (leverage).
- Leverage cycles mostly responsible for asset price fluctuations.

- ▶ Borrowing allows most optimistic individuals to own assets this raises prices.
- ▶ Looser the borrowing constraints, $\uparrow h^*, \uparrow p^*$.
- ► Thus, asset prices ≠ fundamental value; rather dependent on borrowing constraints (leverage).
- Leverage cycles mostly responsible for asset price fluctuations.
- Regulation preventing big leverage cycles can prevent asset price cycles.